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Time-Dependent Correlation Functions for 
Random Walks on Bond Disordered Cubic Lattices 
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For hopping models on cubic lattices with a fraction c of impurity bonds, time- 
dependent transport properties and correlation functions (long-time tails) are 
calculated through a systematic c-expansion (in the percolation literature 
referred to as "high-density expansion"), using a method developed in an earlier 
paper. The time-dependent diffusion coefficient, velocity autocorrelation 
function (VACF), and Burnett functions are calculated exact to O(c) for all t, 
and exact to O(c 2) for long times only. A comparison is made with the results of 
the effective medium approximation, and numerical results are given for the 
square lattice. 

KEY WORDS: Random walk on random lattice; bond percolation; random 
resistor network; Lorentz gas; velocity-correlation function. 

1. I N T R O D U C T I O N  

Kinet ic  theory  me thods  have p roven  successful (1 31 for s tudying  r a n d o m  
walk (RW)  p rob lems  on d i so rdered  lattices, (4) in which a fract ion c of 
bonds  or  sites have been replaced  at  r a n d o m  by impuri t ies .  These me thods  
p r o d u c e d  systemat ic  dens i ty  expans ions  of  t r anspor t  p roper t ies  and  t ime 
cor re la t ion  functions,  exact  to l inear  and  quadra t i c  o rder  in the impur i ty  
concen t ra t ion  c for general  d imens iona l i ty  d. 

F o r  the special  case of b o n d  pe rco la t ion  (where an impur i ty  
cor responds  to a b locked  b o n d  and  where p = 1 - c is the p robab i l i t y  that  a 
bond  is open)  the c -expans ion  yields wha t  is referred to in the pe rco la t ion  
l i tera ture  as "h igh-dens i ty"  expansion.  (5) "Low-dens i ty"  or  p -expans ions  for 
the macroscop ic  conduc t iv i ty  and  connectedness  cor re la t ion  funct ions are 
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well developed (6) through a mapping of the percolation problem on the 
q-state Ports model with q = 1. (7) However, "high-density" or e-expansions 
only exist for the percolation probability and some moments of the cluster- 
size distribution function. For  ac and dc transport properties no exact  
results are known except to linear order in e = 1 - p .  Here one has to rely 
on approximations, such as the effective medium approximation 
(EMA).(8 1o) For static transport coefficients in bond percolation problems 
away from the percolation threshold EMA happens to produce results 
in good agreement with existing computer simulations, (81 but EMA for 
frequency- or time-dependent phenomena has not been critically tested 
against exact results or computer simulations [see Ref. 3, below 
Eq. (6.92)]. 

In the present paper we study the so-called random barrier model 
(RBM) O13) or a random binary mixture of conductances a and 0o on a 
hypercubic lattice, where the emphasis is on frequency and time depen- 
dence. Its static transport properties were already calculated in a previous 
paper, (3) referred to as paper I. A small selection of the time-dependent 
results for the square lattice has already been presented. (2) 

Exact results on time dependence are of special interest not only for 
testing EMA, but also in view of the long-time tails ~ t  - l - a / 2  in the 
velocity autocorrelation function (VACF) and similar tails in related time 
correlation functions, as occur in Lorentz gases and stationary random 
media./14-~8) In these models quantitative agreement is still lacking between 
computer simulations and theoretical predictions of time tails. (18~ 

A noteworthy exception is a recent simulation by Frenkel (19~ on the 
VACF for a hopping model on a square lattice with a fraction of blocked 
sites. (2~ Analytic results for that model (~) show that the pure long-time tail 

t-1-d/2 cannot be seen within time intervals accessible in modern com- 
puter simulations, say, up to 60-100 mean hopping times or mean free 
times. However, inclusion of the first subleading long-time behavior of the 
O(c) correction [which is of relative O( t -~ ln  t)]  shows quantitative 
agreement between analytic results and computer simulations for times 
from 20 to 60 mean hopping times. (19) 

In the RBM to be considered in this paper, the analytic calculations 
are considerably simpler than those for the site-disordered model simulated 
by Frenkel. This makes it feasible to perform a numerical calculation of the 
VACF and other time correlation functions for all times, exact to O(e 2) for 
2D and 3D systems. In the site-disordered model, one has only been able 
to obtain the dominant long-time tail in O(c2). (1) The above properties 
make the present model a suitable candidate for computer simulations. (2~) 

Next we briefly recall that the RBM represents a RW model on a 
hypercubic lattice, in which a fraction c of the bonds chosen at random are 
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replaced by "impurity" bonds. The jump rates a ("conductances") 
associated with an impurity bond may be larger or smaller than those of 
the host lattice bonds ao = 1 (in appropriate units). The a values range 
from a = 0  (percolation, ants in a labyrinth problem) (22~ via random 
resistor networks to termite problems where r >> 1. (4'11'22) The model can be 
described by the master equation 

l~n= ~ w~,~+p(p,,+p- p~) (1.1) 
P 

Here w,,,,+p = w,,+p,, is the transition rate to jump from site n to its nearest 
neighbor (n.n.) site n + p, defined as 

w,,,+p = (1/2d)(1 - bc~.~+p) (1.2) 

The parameter a (with a = 1 - b  > 0) represents the transition rate across a 
single bond, and c~,,+p is a random variable associated with the bond 
(n, n + p) and defined as 

{10 with probability c (1.3) 
c~,~ + p = with probability 1 - c 

The basic quantity is the response function: 

F(q, z) = dt e -~t ~ e iq( . . . .  )(p(nt; toO)) (1.4) 
n , m  

where (p(nt; mO)) = Pn_m(t) is the probability for a displacement n - m of 
the RW, averaged over all impurity configurations { c,,,n + p }. In paper I this 
quantity has been systematically expanded in powers of c, and the coef- 
ficient of O(c m) is expressed in the form of cluster integrals (lattice sums) 
involving m impurities. The cluster integrals have the same structure as the 
m-tuple collision integrals in kinetic theory. (23) Derivatives of (1.4) with 
respect to qx yield the moments of displacement. They determine the time- 
dependent diffusion coefficient D(t) and the Burnett coefficient B(t): 

D(t) = �89 = & ~b(~) (1.5a) 

~(t)=2~(O/Ot)[<n4)_3<~,z)zl,~ j (1.5b) 

Their long-time l imits/5(oo) and ~(oo), if they exist, determine the static 
transport coefficients. The lattice analog of the VACF is 

~(t) = <vx(O) vx(t) ) = �89 2 ) (1.6) 
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In paper I we obtained a formal expression [see I, Eq. (4.3)] for its 
Laplace transform, r  i~162 exact to O(c2). 

In generalized hydrodynamics one usually defines a frequency-depen- 
dent diffusion coefficient and (modified) Burnett coefficient 45(z) and A(z), 
respectively, through the small-q behavior of the response function, (17,ts) 
namely 

F(q, z ) =  [ z + q 2 4 5 ( z ) - q 4 A ( z ) ]  -1 (q--*O) (1.7) 

The quantity 45(z) is in fact the Laplace transform of the VACF, and 
45(0)=/5(oo)=D is the static diffusion coefficient. The ac conductivity is 
essentially given through Z(co)=Re 45(ico). The ordinary and modified 
Burnett coefficients are also interrelated, as shown in Appendix A. Since we 
shall be discussing lattices with discrete translational and rotational 
symmetries, D and 45 are second-rank tensors, and B and A are fourth-rank 
tensors. A formulation appropriate for cubic lattices is given in 
Appendix A. 

There exists an extensive literature on long-time tails in fluids (24) and 
in stationary random media, such as Lorentz gases and RW models on dis- 
ordered lattices. (1~ In fluids, the VACF has a positive tail ~ t  a/2; in 
diffusive systems the tail is r  - ( ( 6 D )  2) t -1-e/2, where mode coupling 
theories show that the coefficient is proportional to the variance in the 
spatially fluctuating diffusion coefficient. (~a~ 

Long memory effects cause the Burnett coefficients to diverge in some 
cases. (18'26) In fluids B( t )~  t ln  t for d = 2  and B(t) ~ x~- for d =  3, whereas 
in diffusive systems /~(t)~ log t for d =  2 and B(t) is finite for d =  3. The 
coefficients A(z) show similar singular behavior for z ~ 0. 

In paper I it was also shown that replacement of o.-bonds by O-o-bonds 
and vice versa and a simultaneous rescaling of the time gives the symmetry 
relation P.(c, o., t) = P.(1 - c, 1/o., o.t), implying 

ff)(t, c, o.) = o.D(o.t, 1 - c, 1/o.) 
(1.8) 

O(t, c, o.) = azo(o.t, 1 - o., 1/o.) 

The formal expression for the VACF from paper I, exact to O(c2), is given 
by 

g 

-- C T -  cZT t --2dJT + 4d 2 T 2 ( J -  j2 + z f )  45(z) Do 

+ ~ R~x(n , z)/[1 - R~(n ,  z)] 
n r  

+ ( d - l )  ~ -- Rxy(n , ( R~y(n, z)/[1 z)] 1.9) 
3 n ~ 0  
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where D O = l/2d and J'(z) = dJ(z)/dz and 

T(z) = (b/2d)/[ 1 - bJ(z) ] (1.10a) 

J(z) = (l/d) fq ~o(q)/Ez + co(q)] (1.10b) 

R~#(n, z) = T(z) G~(n, z) (1.10c) 

G~t~(n,z)= fqe-i~q(1-e-iq~)(1-eiqQ/[z +co(q)] (1.10d) 

The average j'q is taken over the first Brillouin zone of a hypercubic lattice 
with q -- {qlq2"'" qa), namely 

and 

f(q) = (2~1 =d dql dq2.., dqdf(q) (1.11) 
~z - - i z  - - r e  

d 

co(q)=d  -I  ~ ( 1 - c o s q ~ )  (1.12) 
x = l  

The paper is organized as follows: In Section 2 the short- and intermediate- 
time behavior of the VACF and time-dependent diffusion coefficient are 
calculated. Their long-time behavior is discussed in Section 3. Burnett coef- 
ficients are treated in Section 4 and Appendix A. The results obtained and 
their relevance for computer simulations and testing approximate theories 
are discussed in Section 5. 

2. S H O R T -  A N D  I N T E R M E D I A T E - T I M E  B E H A V I O R  OF  V A C F  

The VACF to linear order in the impurity concentration c is deter- 
mined by summing all repeated visits of the RW to a single impurity site. 
This quantity in turn is determined by the probability of return to the 
origin on a uniform lattice, which is essentially the ring collision integral in 
kinetic theory. (16.17) 

The Laplace transform of the VACF is explicitly given by [see (1.7) 
and (1.8)] 

r ----- Do{ 1 - bc/[1 - bJ(z)] } (2.1) 

It is convenient to write the ring collision integral (1.8) as 

d(z) = d - l [ 1  -- zL(z)] (2.2) 
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with 

L(z)=J [z+~o(q)] 1 = - L ( - 2 - z )  
q 

(2.3) 

and one easily verifies the above symmetry. 
At short times we determine ~b(t) from an expansion of (2.1) in powers 

of l / z  and a subsequent term-by-term Laplace inversion: n ! z  - n - ~  
corresponds to t '~ and 1 to 6+(t) ,  which is a Dirac delta function 
normalized as S~ d t 6 + ( t ) - - 1 .  Since the integrals occurring in the z -1 
expansion of (2.2) are elementary, we simply state the first few terms in the 
short-time expansion of the VACF: 

r = Do(1 - bc) 6 + ( t) - Docb2/d  + tDoc(b2/2d2)(2d  + 1 - 2b) 

- t2Doc(b2/4d3)(2d 2 + 3 d -  4db - 2b + 2b 2) + O(t 3) (2.4) 

If so desired, one can easily extend it to higher orders in t. We only quote 
this expression because it has been used in testing our numerical procedure 
for calculating the inverse Laplace transform of ~b(z) and the results are 
shown as dashed curves in all figures at short times. In Eq. (6.10) of paper I 
we have, in fact, already obtained the exact short-time behavior of ~b(t) at 
arbitrary impurity concentration up to O(t )  terms included for the RBM 
on a d-dimensional lattice. For the random chain (d=  1) the short-time 
expansion at arbitrary impurity concentration is actually known up to O(t 3) 
term included [see Eq. (16) of Ref. 27] if one calculates the moments of the 
random variable (1.2) using (1.3), namely 

( (w - ( w  ) ) " )  = (b /2)~[c(c  - 1)" + (1 - c) c"] (2.5) 

In order to determine the VACF at finite times we have to invert the 
Laplace transform of (2.1). We first observe that q~(z)~ q~(oo)+ O(z  -1)  as 
z--, 0% since J ( z ) ~  z - l +  O(z-2). Hence, the inverse Laplace transform of 
the remainder q~(z)- qS(oo) exists, and we define 

D E  ----- qS(oO) = D o ( 1  - -  be) 

+ (z)  =- q)(z) - ~5(oo ) = - D o c b 2 d ( z ) / [ 1  - bJ ( z ) ]  
(2.6) 

Here D E is the so-called Enskog value of the diffusion coefficient (also 
referred to as "short-time," "bare," or "high-frequency" value). The factor 
( 1 - b e )  in (2.6) is the effective free volume fraction or porosity of the 
lattice. 



Random Walks on Bond Disordered Cubic Lattices 651 

The VACF is now given by 

~(t) -- DE 6 + (t) + ~ + (t) 

(2.7) 
4+( t )  = (2~i) ~ | , ~ + o  - 1 dz ~ + (z) exp(zt) 

's - -  i o v  + 0  

The contour along the imaginary axis can be closed in the left half-plane 
(Re z < 0) by a large semicircle. The contributions come from a possible 
pole ~p(t) and from a branch cut ~b(t) extending along the negative real 
axis with Re z~ [ - 2 ,  0]. The branch cut is determined by the interval 
where the denominator z + ~0(q) in the integral (2.3) is vanishing. The pole 
of ~ + ( z )  is determined by the zero of the denominator in (2.6): 

bJ(z) = 1 ( 2 . 8 )  

where b ~< 1, except for the one-dimensional case, where b < 1. 
The analysis is best illustrated by first considering the 1D case. There, 

calculation of the ring collision integral (2.2) yields 

J(z)  = 1 - [z/(2 + z)] 1/2 (2.9) 

so that 

q~+(z)=�89 - [z/(2 + z)]l/2}/{1 - b  - 1 -  [z/(Z + z)] 1/2} (2.10) 

As far as poles are concerned, Eq. (2.8) only has a solution for b < 0 ,  
corresponding to impurities with a transition rate a = 1 -  b that is larger 
than the transition rate a o = 1 of the host lattice. The pole is located on the 
negative real axis at zp = - 2 ( 1 - b ) 2 / ( 1 -  2b) to the left of the branch cut, 
since zp < - 2  for b < 0. The resulting pole contribution to the VACF is 

q~p(t) = c[Do/J'(zp) ] exp(zp t) (2.1 la) 

= c[2(1 -- b)b3/( t - 2b) 2 ] exp(zp t) (2.1 lb)  

where the prime on J(z)  denotes a derivative. 
The contribution from the branch cut is 

q~b(t) = n -~ d x e - X ' I m q ~ + ( - x - i O )  (2.12a) 

f l  e-X'( = ( c / ~ ) e  - t  dx 1-x2)i /2/[~z2+ l +(~  2 1)x] (2.12b) 
- - 1  

with ~ =  1 - b  -1. The second expression follows from (2.10) and (2.12a) 

822 , ' 48 /3 -4 -  i 9 
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after shifting the integration variable and symmetrizing the integrand. The 
VACF is then given by 

,~ + ( t )  = ~,~b(t),  b > 0 
tOp(t) + r b < 0 

(2.13) 

As a test one might calculate (2.12b) at t = 0. After the substitution y = 
[(1 + x ) / ( 1 - x ) ]  1/2 the integral can be evaluated by contour integration 
and yields 

lcb2 , b > 0  
(Jb(O) = cb2/(1 - 2b) 2, b < 0 (2.14) 

One verifies with the help of (2.11) and (2.14) that (~+(0)=cb2/2 for all 
b < 1 in accordance with (2.4) for d = 1. 

Next, we consider the general case where the ring collision integral is 
determined by (2.2). The pole in q~+(z) is determined by solving (2.8). It is 
located on the negative real axis outside the branch cut. Thus, we set 
z = - 2 - ~  (if>0) and rewrite (2.8) using L ( z ) = - L ( - z - 2 ) ,  with the 
result 

L(~) - (1 - d/b)/(2 + ~) (2.15) 

We use a graphical solution method: observe that L(~) is positive and 
monotonically decreasing for {>0 .  Furthermore, L(0) is divergent for 
d = l  and 2, a n d L ( 0 ) < o o  ford~>3, a n d d e c a y s l i k e L ( ~ ) ~  t _ ~  2+ ... 
as ~--+ c~. For Eq. (2.15) to have a solution, its rhs must also be positive. 
Consequently, b < 0 [see (1.2)]. As b I" 0, the rhs grows beyond all bounds, 
and there is only a solution for d =  1, 2. For d~>3 there exists only a 
solution if b <~bo(d)= d / [2L(O) -1]  where L(0) for d =  3 is a Watson 
integral, given by L(0) ~ 1.51638633~ 

As b--+ -0% the root ~p-~ oo and can be determined analytically as 
Up ~___ - b / d +  O(b ~ or Zp = - 2 - ~ p = b / d  + O(b ~ as b-+ -Go. The residue 
in (2.11a) can be calculated straightforwardly, yielding 

(Jp(t) ~ -c(d2/2b 2) exp(tb/d), b ~ - co  (2.16) 

As bT0, the root ~p$0 for one and two dimensions. The 1D case was 
already solved exactly in (2.11b). For the 2D case, where L ( z ) ~  
- n  -1 ln(z/8) as z-+ 0, one finds ~p~ 8 exp(2n/b) and the pole contribution 
to the VACF is 

~p(t) ~ -c(rc~p/4) exp[ - (2 + _~p)t], b ~ -oo  (2.17) 
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For finite, negative b values, Eq. (2.8) has to be solved numerically. From 
now on we restrict ourselves to the two-dimensional case, where the ring 
integral can be calculated analytically in terms of L(z) [see I, (C5)]: 

~ rc/2 

L(z) = (2/g) dt [(1 + z )  2 - c o s  2 t] 1/2 
~0 

= +z) -1 x[(1 +z) -2] (2.18) 

Here K(x) is the complete elliptic integral of the first kind [see Eq. (17.3.1) 
of Ref. 31]. The residue in (2.11a) is obtained from the relation 

L'(z) = --[z(2 + z)] -1(2/~) E[ (I  + z) -2 ]  (2.19) 

~ ;I'" 
i "- -. SOURRE LRTTIOE 

7 ~ .  , \ BONO PEROOLflTION 

m \ 

~ . 

2 g 

8 ,: 2 

z I I , , I 
0 .0  ,5 1,0 1.5 2.0 2.5 3~ 3~ q.o 

# OOLLISION TIMES 

Fig, 1. Plot of - V A C F  ~b+(t) in (2.7) to O(c) as a function of the number of mean collision 
or hopping times t for parameter value o r = l - b = 0  (percolation, ants), The insert is a 
blowup of the long-time behavior. Dashed lines on the rhs represent the short-time 
approximation (2.4); dashed lines on the lhs represent the pure long-time tail (3.4) (straight 
line, labeled c) or inclusion of the subleading term (3.7). 
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where E(x) is the complete elliptic integral of the second kind [see Eq. 
(17.3.3) of Ref. 31]. The above equation can be derived from Eqs. 
(17.3.9, 10), (15.3.3), and (15.2.15) of Ref. 31. The pole contribution for 
d = 2 becomes then 

~,(t) = - ( c~ /4 )  e ~"' 

x {(Zp+ 1) -1K[(zp+ 1) -2]-(zp+2) -1E[(zp+ 1)-2]} -1 

(2.20) 

for b < 0, whereas ~b,(t) = 0 for 0 < b ~< 1. 
To determine the contribution from the branch cut (2.12a), we split 

(2.18) for z = - x + i O  into its real and imaginary parts. Let to= 

if 
ta_ 

n -  
> 

I 

L~. 
ED 

SQUARE LATTICE 
. ..~. BONO PEBCOLRTION 

% 

m 

% 

% 

Io 3 5 8 lo t 3 5 8 to 2 

,0 t .5  2.0 2.5 3.0 

# COLLISION TIMES 

3.5 4.0 

Fig. 2. Same asFig. 1, f o r a = l - b = 2 .  
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a rcos (1 -x )  be the angle where the argument of the square root in (2.18) 
changes sign. Then it follows for 0 ~< x ~< 1 

L ( - x  + iO) = L i (x )  -T iL2(x) 

r l (x)  = (2/~) K(cos 2 to)= (21~) K[(1 - x )  2] 

L2(x) = (2/~r) K(sin 2 to)= (2/~) K[-x(2 - x ) ]  

For x e  [-1,2] one can derive analogous relations using the symmetry 
L ( z ) = - L ( - z - 2 ) .  We omit the detailed analysis and only quote the 
result: 

SQURRE LRTTIOE 
BOND PEROOLflTION 

c i  

i i  

h 

S 

='F 

:L 
0~ 

B= - 1 0 . 0  

\ \  C \ \  
c~ \ \ \ \ \ \  

T 

I I I l l l l l l  I i l t l l J J I  I I I I 1 ~  i I i ~ l ~ ) j  
To- 3 5 I0-'~ 3 S lO0 3 5 IO} 3 S lo2  

.s t.0 t.s 2.0 2.s 3.0 3.s 4.0 
# COLLISION TIMES 

Fig. 3. Same as Fig. 1, for a = 1 - b = 11 (superconduct ing bonds,  termites). The time scale 
(0.01 < t < 100) differs from that in Figs. 1 and 2. The curves labeled a and b represent, respec- 
tively, ~b+(t) and fkp(t), defined in (2.13) and discussed in Section 5. 
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~b(t) = (cb2/2~) dx xL2(x) e-~' 

x { [ 2 - b - b x L l ( X ) ] 2 +  [bxL2(x)] 2} -~ 

+ (c62/2~) dx (2 - x) Lz(x)  e (~-2~' 

x { [ 2 - b - b ( 2 - x )  L I ( X ) ] 2  + [ b ( Z - x )  Lz(x)] 2 } - '  (2.21) 

The final result for the VACF to O(c) in the 2D case therefore equals ~bb(t) 
for b>0 ,  and for b < 0  one has O+(t)=Op(t)+(~b(t). The expressions in 
(2.20) and (2.21) have been evaluated numerically and the results are 
shown in Figs. 1-3 for the values of b =  1, - 1 ,  -10.  The plots show 
-~b+(t) (solid line) defined in (2.7) and denoted by O(c) of -VACF( t )  on 
the vertical axis of the graphs. The dashed lines on the left represent the 
short-time behavior obtained from (2.4) with up t o  O(t 4) terms included. 
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Fig. 4. Reduced time-dependent diffusion coefficient d(t), defined in (2.22), to O(c) as a 
function of l/t, the inverse number of collision or hopping times at parameter value a = 
1 - b  = 0. The curved dashed line represents the long-time approximation (3.8) and the straight 
dashed line represents the pure asymptotic tail ~(t)~-D + tilt. 
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The dashed lines on the right represent long-time behavior, to be discussed 
in the next section. 

The time-dependent diffusion coefficient /3(0 defined in (1.5) is the 
inverse Laplace transform of z-lqS(z). It can be calculated along the same 
lines as ~b(t), and the results are shown in Figs. 4-6. What is actually shown 
is the density-independent quantity 

d(t)= [D(t)-DE]/(DE--Do)=(beDo) -I d~c~+(z) (2.22) 

where D(O+)=DE=Do(1-bc  ) with D0=1/4 is the high-frequency or 
Enskog diffusion coefficient (2.6). The dashed lines represent short- and 
long-time approximations. 

3. LEADING A N D  S U B L E A D I N G  L O N G - T I M E  TAILS 

3.1. O(c) Contr ibut ions 

In view of the long-standing interest and difficulties (14 18) around long- 
time tails in Lorentz-gas-type models, we devote a separate section to 
asymptotic long-time behavior of the VACF. In the first subsection we 
consider the contributions linear in the impurity concentration, and in the 
next subsection the O(c 2) contributions. 

Long-time tails of the VACF are determined by the singularities in 
q~(z) that are closest to the origin. In the O(e) terms of (2.1) the dominant 
singularity is a branch point at the origin, as discussed in Section 2. Let 
(SA(z) denote the singular part of A(z) as z-+ 0. Then we determine 6J(z) 
for the ring collision integral J(z). This singularity is determined by the 
small-q integration region in (2.3), where 

d 

oJ(q)~Do ~, (q2-q4/12+ ...) 
~ 1  

In time language, the long-time tail or singular part follows from (2.2) and 
(2.3) as 

~- �89 d/2 t -1 --d/2[1 -k d(d + 2)/8t + --.3 (3.1) 
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or in Laplace  language as 

6J(z )  ~ �89 a/2 F ( -  d/Z ) zd/2(1 - z d / 4  + . . .  ) (3.2) 

with z ~ 0. 
We have used the Tauber i an  theorems,  listed in Table  I, relating the 

large-t  behavior  of  a function f ( t )  to the small-z behavior  of its Laplace 
t ransform f (z ) .  In fact, (3.1b) applies to the odd d values; for even d values, 
Eq. (3.1b) is defined th rough  a limiting opera t ion  with d =  2n + e as e ~ 0 
and n = i n t e g e r .  The  singularity 6J(z )  induces a singularity in ~ (z )  to 
dominan t  order  given by  

6 ~ ( z )  ,~ - �89  - b ) - Z  3J(z) ,  z ~ 0 (3.3) 

Thus,  the dominan t  long-t ime tail of  the V A C F  to O(c)  is 

(k(t) ~ - �89 - b )Z](d /2~t )  1 + a/2, t ~ oo (3.4) 

To  have an est imate of  the t ime scale on which the tail (3.4) is dominant ,  
we determine the first correct ion to (3.4). In fact, for the 1D case, the 
leading and subleading long-t ime tail of the V A C F  is known exactly for 
a rb i t ra ry  impur i ty  concent ra t ion  (27 29) and has the form 

~b(t) ~ - f i t -3 /2(1  + ro/t + . . . ) ,  t ~ co 

with 

fl = (4 x/-~) ' b2(1 - b)1/2(1 - b  + bc) -5/2 c(1 - c) 

Zo = -3~al/1~2 

where a~ can be expressed in terms of momen t s  #2,/~3 and #4 (see Table  i, 
Ref. 28), defined as 

p ,  = D " ( ( w  - 1 -  ( w - ' ) ) " )  = [c(1 - c ) " +  (1 - c ) c " ]  b"/(1 - b + b c ) "  

T a b l e  I. T a u b e r i a n  T h e o r e m s  

Small-z behavior Large-t behavior 

F( --~)z ~ (~ ~ 0, 1, 2,...) t -~- l 
(_)n+~znlnz (n=0, 1, 2,...) n! t -n-I  

--z(lnz) ~ (2 In t+27--2) t -z 
z2(ln z) 2 (4 In t + 4V -- 6) t-3 

Euler's constant 7 -~ 0.5772 
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Here D = 1/ (w 1 ) = (1 - b)/(1 - b + bc) is the exact diffusion coefficient 
for the 1D case. The second equality follows from Eq. (1.3). 

In the 2D case we analyze the O(c) term (2.1) in the VACF. The 
singular part of J(z) is given by (3.2) with the appropriate limiting 
operation (d= 2 + e, e ~ 0). However, we also need the regular part of J(z), 
correct to relative O(z) [see I, Eq. (C7)] 

J(z) ~- 1/2 + (1/2~)(1 - z / 2 ) z  ln(z/8) + ... (3.5) 

Combining (3.5) with (2.1) yields for the singular small-z behavior in the 
2D case 

6~(z)  ~- -c(b2/2~)(2 - b) -2 z In(z/8)[1 - �89 + (b/Tr)(2 - b ) - i  z ln(z/8)] 

(3.6) 

and the corresponding long-time tails, exact to O(c), can be read off from 
Table I: 

with 

~b(t) -~ - /3 t -2[1  + (zo/t) ln(t /Zl)+ . . .] (3.7a) 

3 = c(b2/2~)( 2 - b) -2  

zo = (4b/7~)(2 - b) -1 (3.7b) 

z 1 = ~ exp(3/2 - 7 + re/4 - 7r/2b) 

where 7 = 0.5772 is Euler's constant. Note that the approach to the t -2 tail 
is of relative O(t-~ in t), which is extremely slow. In Figs. 1-3 the long-time 
behavior and the asymptotic corrections (3.7) are compared with the 
intermediate-time behavior obtained numerically in Section 2. 

The time dependence of the diffusion coefficient/3(t) defined in (1.5) is 
given by the inverse Laplace transform of z l~(z). Its asymptotic long- 
time behavior thus follows immediately from z-lcSOb(z) and Table I. We 
only quote the result for the 2D case: 

/~(t) = D + (/?/t)[ 1 + (Zo/2t) ln(t x/-e/zl) + -..3 (3.8) 

where D = / 3 ( o o ) =  � 8 8  2 b c / ( 2 - b ) ]  is the static diffusion coefficient to 
O(c) [see I, (4.4)]. For dimensionality d~> 3 the first correction term to the 
dominant singularity in the VACF is always of relative O(z) and is 
contained in 

6qb(z) ~_ - (cd /2)  b2[d - b + zbL(O) ] -2 6J(z) 
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with L(z) defined in (2.3). The long-time tail of VACF, exact to O(c), and 
including its first correction follows then from Table I and (3.4) as 

O(t) ~- - f i t  -1 a/2(1 + z~d~/t + "") (3.9a) 

with 

fl = ( cd/4 ) b2( d -  b)-2(d/2g)d/2 

r{a)= d(d+ 2)/8 + (d+ 2) bL(O)/(d- b) 
(3.9b) 

3.2. O(c 2) Contribution 

Next, we consider the O(c 2) contribution to the VACF in (1.7), 
restricting ourselves to the singular part. We investigate the singular part of 
the quantities appearing in (1.9). Starting with (1.10a), one finds 

~ST(z) ~_ 2dT2(0) (~J(z) 

with 6J given in (3.1). The singular part of R~(n, z)= T(z) GaB(n, z) can be 
determined using similar arguments as in (3.1a) and one obtains 

6G~(n, t) = 3~3Gxx( O, t) ~- 2 d ~ 6 Y (  t ) 

This implies for R~(n, z) in (1.10c) 

cSR~x(n, z) ~- 2dT(O)[Rxx(n, O) + 1] 6J(z) 

6R~y(n, z) ~- 2dT(0) R~y(n, O) 6J(z) 

For the dominant small-z singularity of the O(c 2) term in (1.9) one finds 
after a lengthy calculation using the results of Appendix B 

6~(z )~- - (c /Z)db2(d-b)  Z ( l + f l l c +  . . .)6J(z) (3.10) 

where the coefficient is given by 

~ = �89 b) 2[b2(4 - d) + b(d 2 + 2 d -  4) - 2d] 

+ 3b2(d-b) -2Ed-  1 - ( d - Z )  L(0)] 

+ 2 ~ R ~ , ( n ) [ 4 - 3 R = ( n ) ] [ 1 - R ~ ( n ) ]  2 
nv~O 

4 2 - Rx~(n)] (3.11a) + (d_l )~R~v(n)[5_3Rxy(n)][1  2 -2 
n 

where R~(n)=-R~(n, 0) is used for convenience of notation. In the 2D 
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case the factor [ d - 1 -  ( d - 2 ) L ( 0 ) ]  should be replaced by ( 1 - 2 / ~ )  due 
to (B.4), where the symmetry property Rx~,(nx, ny)= -Rxx(ny,  nx) [see I, 
Eq. (A4)] enables us to symmetrize the first lattice sum in (3.11a) with 
respect to interchange of nx and ny. The resulting lattice sum is 

R3x(n)[4_3Rx~(n)][1 - Rxx(n) ] 2  2 

n ~ O  

= ~ R4x(n)[5-3R2x~(n)][1-R2x(n)]-2  (3.11b) 
nv~0 

The final long-time tail for the VACF, exact to O(c2), again has the form 
(3.9a), where the coefficient/~ = fl(c, ~), with a = 1 - b ,  is now given by 

fi(c, a) = c(rc/2) bZ(d - b)-Z(d/27t) 1 + a/2(1 + cfll + " ") (3.12) 

O(c 2) contributions to r o and zl in (3.7) and (3.9) have not been calculated. 
The coefficient fit involves two lattice sums, which have to be evaluated 
numerically. This has only been done for the 2D case. The values of 
R~(n, O) = T(O) G~,(n, 0) for several lattice points n = {nx, ny} are listed in 
Table I of paper I. The resulting values for fi~(a) are listed in Table II of 
this paper for several values of b = 1 - a. The above lattice sums converge 
extremely rapidly, and the contributions from the nearest neighbor sites 
{+ 1, 0} and {0, +1} determine the value of ill(a) with an accuracy of 
1.3 % over the whole range of ~r values. 

As mentioned in the introduction, the symmetry relation (1.8) for the 
VACF under interchange of good and bad conductors and a simultaneous 
rescaling of time implies the symmetry relation/~(c, a)=/3(1 - c ,  1/~r), valid 
for all d-dimensional simple cubic lattices. 

However, for the square lattice, there seems to exist an additional sym- 

Table II. O(c z) Expansion Coefficient of ~(c, G) Defined in (3.12) 

~' = 1/~ /~1(~) =/~1(~') 

0 oo 3.771346 
1/10 10 2.026278 
1/8 8 1.707141 
1/5 5 0.940250 
1/4 4 0.551675 
1/2 2 --0.538283 
2/3 3/2 -0,835464 
3/4 4/3 -0.916286 
4/5 5/4 -0.949416 
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metry: /~(a)  =/~1(1/~), because the coefficient/~(c, ~) in (3.11a) and (3. l lb)  
is invariant under the substitution a ~ or'= 1/a or, equivalently, b ~ b'= 
b/(b-  1). Note that (3.11a) and (3.11b) for square lattice only depends on b 
in the combination IT (0 ) ]2=  b2/(2-b) 2 with R~e(n)= T(O)G~(n, 0) [see 
(1.10)]. Thus, the coefficient (3.12) of the long-time tail satisfies the 
additional symmetry relation 

fi(c, ~)= fl(c, 1/cr) (3.13) 

at least to O(c 2) terms included. We conjecture that this symmetry holds 
for arbitrary values of impurity concentrations and is related to the self- 
duality of a binary mixture of random resistors (bond problem) on a 
square lattice. We return to this point in Section 5. 

4. B U R N E T T  C O E F F I C I E N T S  

The Burnett coefficients are related to the fourth moment of dis- 
placement, which is a tensor quantity having two independent coefficients 
for a lattice with cubic symmetry. We start with the modified Burnett coef- 
ficients, defined in (A8): 

Z~xx(Z ) ~- 1Z2  { (Y/4x)(Z) -- 6z(n2)2(z)} 
(4.1) 

-~z  {<n,n,,>(z)-Zz<nx> (z)} 

Here <n4>(z) and 2 2 <nxny>(z ) are Laplace-transformed moments of dis- 
placement, which can be obtained from the response or moment-generating 
function F(q, z) in (1.4) by taking appropriate derivatives with respect to qx 
and qy [see Eq. (A2)]. 

In paper I the response function was calculated in the form F(q, z)= 
g+g2M(q,z) with M(q,z) given in Eq. (3.6) of paper I and q =  
[ z +  co(q)] -1. One obtains after some algebra 

Axx(z) = 1/(24d) + ~4{Mlm(0, z) - 6z ~[MH(0, z)] 2 } 
(4.2) 

Axy(z) = k{M"22(O, z) - 2 z - '  [Mn(0 ,  z)] 2 } 

where superscripts 1 refer to qx derivatives, and superscripts 2 refer to qy 
derivatives, e.g., 

M~122(0, z)= [(c34/aq~ Oq~) M(q, z)] tq=O 

Application of (4.2) to M(q, z) yields, after a lengthy, but straightforward, 
calculation, 
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jx iz)=   iz)_�89 3 n~R~):(n, z)/[1 2 
- R:~x(n, z)J (4.3a) 

n 

 xyIz)= �89 2 3 -- nyRxx(n, z)/E1 - R~x(n, z)]  
n 

_ c Z T E  3 2 nxnyR~y(n, z) /[  1 (4.3b) - R~y(n, z)] 
n 

The two-dimensional sums converge at z = 0, since the summands decay as 
O(ln[-4), which implies that the modified Burnett coefficients exist for the 
square lattice. The summand in (4.3a) at z = 0  is antisymmetric under 
interchange of n~ and ny Esee paper I, Eq. (A9)] and we can write the 
modified Burnett coefficient, exact to 0(c2), as 

d ~x(c, G ) -  lim A~x(z ) 

= D/12 - c2b/[8(2 - b)] ~ (n~ - n 2). R~x(n,O)/[ 1 3  - R~(n,2 0)] 
17 

(4.4) 

The first sum in (4.3b) is the opposite of the one in (4.3a) because of the 
same antisymmetry. If we denote R~y(n) /E1-R2y(n)  ] =C(nx ,  ny), then 
C(nx, n>.) has the same symmetry properties as G~y(n~, ny) in Eqs. (A5) and 
(A6) of paper I, and symmetrization of the summand yields the second 
modified Burnett coefficient, exact to O(c2): 

L1  y(c, G )  - Ll  (z -- O) 

= - (A~ x -  D/12) - cZb/ES(2 - b)] 

x ~ (2n~. + 1)(2ny - 1) R3y(n, 0) [  1 - R~y(n, 0) ]  (4.5) 
n 

The summands in (4.4) and (4.5) have the same symmetry properties as 
H(n~, ny) in Eq. (4.8) of paper I. The integrals R~z(n, 0 ) =  
�89 - b)] G~(n,  0) are listed in Table 1 of paper I for several lattice sites 
n = (nx, ny) near the origin. The total tail contribution originating from all 
terms with [nl > N decays here very slowly, i.e., O(N 2) as N ~  ~ ,  whereas 
the total contribution of the lattice sum in Section 3 decays as O(N-6). The 
resulting values of the coefficients are listed in Table III for several values 
of a =  1 - b .  The symmetry of the average random lattice under the 
interchange of good and bad conductances leads to the same symmetry 
relation as for the diffusion coefficient: 

A~(c, a) = ,TJ~(1 - c, l /a)  

zlx~(c, ~) = ~rJ~(1 - c, 1/a) 
(4.6) 
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Table III. Burnett Coefficients, Defined in (4.4) and (4.7) 

665 

a a'= 1/a c-2A'x c-2zl~y 

0 o~ 1.350 E - 2  6.268 E - 3  
1/10 10 5.920 E - 3  2.653 E - 3  
1/8 8 4.814 E--3  2.144 E - 3  
1/5 5 2.572 E - 3  1.127 E - 3  
1/4 4 1.679 E - 3  7.295 E - 4  
1/2 2 1.574 E - 4  6.68 E - 5  
2/3 3/2 2.03 E- -5  8.6 E - 6  
3/4 4/3 5.3 E - 6 2.2 E - 6 
4/5 5/4 1.9 E- -6  8.1 E - 7  

We further note that the lattice sums in (4.4) and (4.5) are invariant under 
the transformation a = 1 - b --* a'  = 1/o or b ~ b' = b(b - 1) because they 
only depend on b in the invariant combination IT(0)]  2 bZ/(2_ b)2. Thus, 
the Burnett coefficients in the density-expanded forms (4.4) and (4.5) have 
the additional symmetry 

&x(c, a)= ~i~x(c, l/a) 
(4.7) 

Axy(c, a) = A~y(c, l /a)  

where A'~x=Ax~-D/12. This symmetry is also present in the coefficient 
fl(c, a) of the long-time tail of the VACF and is conjectured to be related to 
the self-duality of bond percolation on a square lattice. 

If one is interested in the dominant small-z singularity of the modified 
Burnett coefficients, one can show that 6Axy(z) ~- O(z In z), using a similar 
method as in (3.1). If one applies the same method to Axx(z), one finds that 
the coefficient of O(zlnz) diverges logarithmically, suggesting that 
6Axx(Z),~O[z(lnz)2]. 2 However, we have not analyzed the dominant 
singularity in A,13(z) and its corresponding long-time tail any further, since 
the ordinary Burnett coefficients have a longer time tail, which is entirely 
determined by the tail of the VACF ~b(t) ~- -a t  -2, as we shall see below. 

The ordinary Burnett coefficients, defined in (1.5) for an isotropic 
system and in (A5) for a system with cubic symmetry, are related to the 
long-time behavior of the fourth cumulant of the displacement. This 
behavior can be inferred from (All ) ,  using 

fo~ A~(t)  = lira - a) A~(z) d~(c, (4.8) 
z ~ O  

2 j. M. Luck and Th. M. Nieuwenhuizen (private communication) have proved this conjecture 
by showing that the small-z singularity of Z n~G~(n,z) and Y~n~G3~(n,z) equals 
(3/~2)(log z) 2. 
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where A~(t)  is the inverse Laplace transform of zl~p(z) and Amp(c, a) as 
given in (4.4) and (4.5), with values listed in Table III. We further used the 
long-time behavior of the VACF ~b(t) -~ -B/ t  2 in (3.12) to show 

flU)-= drO(z)~-D+fl/t, t ~ o o  

fo dr/3(z)[/3(t) - D(t - r ) ]  "-~ -riD In t + const, t ---~ oo 

(4.9) 

Thus, we deduce from (Al l )  that the long-time behavior of fourth and 
second moments are related through 

= lim [B~x(t) - r i D  In t] = A~(c, a) (4.10b) 
t ~ O O  

and 

lim [Bxx(t) - Bxy(t)] = A ~x(C, a) - Axy(C, a) 
t ~ c o  

(4.11) 

The above limits exist and their values are listed in Table III. 
From the above results one can derive some interesting conclusions: 

First, we observe that the ordinary Burnett coefficient, defined as the long- 
time limit of B~(t )  in (A6), does not exist for the RBM on the square lat- 
tice, since B~(t) ,,~ In t as t --* oo. The approach of Bx~(t) to its asymptotic 
form in (4.10b), [riD In t + Axe(C, cr)-I, is expected to be O(t -1 In t) and has 
been confirmed (see footnote 2). However, for d~> 3 the Burnett coefficient 
exists. This is the standard behavior for Lorentz-type models, ~t7'18) but here 
also a subleading asymptotic correction A(c, a) has been calculated. 
However, the modified Burnett coefficient defined through (4.1) and (4.8) 
does exist for the RBM with d~> 2, at least to O(c 2) terms included. The 
latter result confirms a conjecture by Alley and Alder (14~ on the existence of 
the modified Burnett coefficient. In the case of fluids the conjecture has 
been disproved. ~ Our results further suggest that Eq. (4.10a) would be 
the appropriate way to correlate the long-time behavior of 4 ( % )  and (n 2) 
in future computer simulations. 

Finally, Eq. (4.11) shows that the divergent terms in Bxx(t) and Bxy(t) 
at times cancel. This result is to be expected on the basis of isotropic 
Lorentz models, where B~(t)---/~xy(t) at all times. The reason is that the 
dynamic events contributing to long-time tails come from large-scale 
hydrodynamic fluctuations in which our lattice model can be considered as 
continuous and isotropic. 
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5. D ISCUSSION 

This paper studies the random barrier model (RBM) or random 
resistor network on a hypercubic lattice with a concentration c = 1 - p  of 
impurity bonds (with conductance ~ = 1 - b) and a concentration p = 1 - c 
of host lattice bonds (with conductance o'0 = 1). Bond percolation, or the 
"ants in a labyrinth" model, corresponds to the parameter value o- -  
1 - b = 0. For  a ~> 1 one has superconducting bonds or the termite model. 

All results are obtained in the form of expansions in powers of c = 
1 -  p. In the percolation literature such results are referred to as "high- 
density expansions" [43. Virtually no such expansion coefficients are known 
for d.c. and a.c. transport coefficients. "High density" or c-expansions have 
only been given for the percolation probability and some moments of the 
cluster size distribution/5~ On the other hand, the coefficients in the 
"low-density" or p-expansion are known to rather high order. (6~ 

The paper concentrates on the VACF ~b(t) and the time-dependent 
diffusion coefficient/~(t), defined as 

~( t )  = D ~  6 + (t)  + ~ + (t)  

(5.1)  

fo /~(t) = DE + dr q~+ (r) 

The corresponding results for the Burnett functions are briefly summarized 
in Section 4. The most important new results are the long-time tails of (5.1), 
exact to 0(c2), and the complete time dependence of these quantities, exact 
to O(c). We first discuss the last results, which are given through (2.7), 
(2.13), and (2.22). 

The most striking property of the VACF is the cage effect, referring to 
the existance of memory effects that lead to negative velocity correlations. 
Here ~+(t)  is negative for all t > 0 .  The cage effect results from a single or 
repeated returns ("ring collisions" in kinetic theory jargon) of the random 
walker (RW) with the same impurity. The hoppings on the host lattice are 
the analogs of "uncorrelated binary collisions" of the moving particle in a 
deterministic Lorentz gas. The present hopping models on disordered 
lattices are referred to as stochastic Lorentz models. (32~ 

Regarding/~(t),  we note that the cage effect with its negative velocity 
correlations substantially reduces the high-frequency or Enskog diffusion 
coefficient D E = / 3 ( t  + 0), so that the ordinary long-time diffusion coefficient 
D(c, ~)= L)(t--, oe) is much smaller than DE = D o ( 1 -  be). The latter coef- 
ficient describes diffusion on an effective uniform lattice with an effective 
number of sites N ( I -  be). 

The short-time behavior of VACF and /3(t) at arbitrary density was 

822/48/3-4-20 
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fully discussed in Ref. 3. The intermediate-time behavior of VACF in O(c) 
requires a Laplace inversion [see (2.7)]. For poorly conducting impurities 
(0 ~< a < 1 or 0 < b ~< 1 ) the inverse Laplace transform is completely deter- 
mined by the contribution ~)b(t) from a branch cut. For the square lattice it 
is given by (2.21) and evaluated numerically for several values of b = 1 - ~ .  
For the value b-= 1 (percolation, ants in a labyrinth) the resulting VACF is 
plotted in Fig. 1 for both short and long times (see insert, where 
1 ~< t~< 100). The corresponding behavior of the reduced diffusion coef- 
ficient d(t) defined in (2.22) is shown as a function of lit in Fig. 4. 

Different behavior is found if the impurity bonds have higher conduc- 
tivity than the host lattice bonds (a > 1 or b < 0). Then there is, apart from 
the above ~bb(t), also a contribution ~bp(t) from a pole, provided a > 1 for 
d~<2 and a > a o ( d ) = l + d / [ 2 L ( O ) - I  ] for the hypercubic lattice with 
d > 2  [see below (2.15)]. For a~>l (termite model, superconducting 
impurities) or for o- slightly above ao the location of the pole zp can be 
determined analytically [see (2.16) and (2.17)] by solving (2.8). For 
general a values the root Zp of (2.8) has to be determined numerically. The 
contribution ~bp(t) for the square lattice is explicitly given by (2.20). 
Combining the numerical values for (2.20) with those for ~bb(t ) in (2.21) 
yields the result for the VACF to O(c) plotted in Fig. 2 (a --- 1 - b = 2) and 
Fig. 3 ( a =  l - b =  11). 

For large a (see Fig. 3) the VACF shows interesting structure already 
in O(c). On the short time scale of 1/o- seconds the termite hops essentially 
back and forth across an isolated superconducting bond or sits at one of its 
two ends. There is only a small probability, proportional to 1/a per hop, of 
wandering off into the normal conducting region. This behavior is 
described by the exponential contribution (2.16) from the pole (see insert 
Fig. 3, solid curve labeled b), which essentially describes the complete 
VACF (solid curve, labeled a) for t < l .  Note that the time scale 
(0.01 ~< t~< 100) on the insert in Fig. 3 differs from that on the inserts in 
Figs. 1 and 2. The corresponding reduced time-dependent diffusion coef- 
ficient d(t) is shown in Fig. 6. It is negative because of the negative factor b 
in the normalization on the rhs of (2.22). Figures 2 and 5 show the VACF 
and diffusion coefficient at an intermediate o- value (a = 1 - b  = 2). 

The long-time behavior of the VACF, ~b(t) - -fl(e, a) t -~-d/2 in (3.7), 
and of the time-dependent diffusion coefficient 

D(t) ~- D(c, a) + [2fl(c, a)/d] t -d/2 

is calculated exactly to O(c 2) for the square lattice with fl(c, a) given in 
(3.12) in combination with Table II. Calculation of the coefficient fi(c, a) in 
(3.10) and (3.11) to O(c 2) requires the evaluation of lattice sums describing 
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all possible visits of the RW to two different impurities. The sums, which 
converge rapidly, have been evaluated numerically. The present RBM 
together with the related hopping model on a square lattice with excluded 
sites (~) is the only model for which the dominant long-time tail has been 
calculated to O(c 2) in the impurity concentration. 

The coefficient of the tail for the RBM exhibits an unexpected sym- 
metry fl(c, a )=f l (c ,  l/a), valid for the self-dual square lattice only, as 
verified below (3.12) to 0(c2). It is conjectured (2) that this symmetry holds 
for arbitrary impurity concentration and is a consequence of the self- 
duality of the RBM on the square lattice. This conjecture is based on (i) 
mode coupling (18) and kinetic theory (33~ calculations, predicting that ~b(t) 
--((bD) 2) t 1--d/2 aS t-* o9, where ((6D) 2) is the local fluctuation in the 
spatially varying diffusion coefficient of the disordered system, and (ii) the 
work of Wright et al., (34) who used self-duality arguments to show that the 
local fluctuations in the resistivity, which are proportional to ((6D)2), 
satisfy the same symmetry. 

The long-time tails are caused by the repeated return of the RW to the 
same impurity ("repeated ring collisions"), which is the same mechanism 
causing long-time tails in fluids and stationary random media. (~4-~8) At low 
densities there is an interesting difference between a deterministic Lorentz 
gas, where D(c)~ 1/c as c-~ 0, and a hopping model, where D(c)~ const 
as c -~ 0. In the former model the coefficient fl(c, a) for c ~ 0 is only deter- 
mined by the ring collisions, (16'~7) whereas in the latter models one has to 
sum all repeated ring collisions. If fiR(t) and ~RR(t) denote, respectively, the 
VACF at long times obtained from the ring (R) and repeated ring (RR) 
collisions, one has for the present hopping model 

~bnR(t) -- [d2/(d - b) 2] ~bR(t), t -~ (5.2) 

There have been many unsuccessful attempts to test the results on 
long-time tails in Lorentz gases obtained from computer simulations 
against those from theoretical predictions, as discussed in Ref. 18. The 
present model offers a promising candidate for a successful comparison 
because we have also determined the first subleading correction to the tail, 
which is of the form 

f - f l t - l - d / 2 [ l + r o / t + O ( t  2)], d > 2  
~b(t)= [ - f l t  2[l +(Zo/t)ln(t/zl)+O(t-2)],  d = 2  

(5.3) 

and the coefficients To and ~1 have been calculated in (3.9) and (3.7) to 
lowest nonvanishing order in c. 

To illustrate the importance of the subleading terms in the VACF to 
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O(c) for the two-dimensional case, we have plotted in Figs. 1-3 (dashed 
lines at large t) both the dominant tail of O(t -2) as well as the tail with the 
correction term included. The latter form (dashed lines at large t, Figs. 1-3) 
essentially coincides with the exact O(c)-  VACF (solid lines) for t ~> 5. The 
inserts in Fig. 1 ( a = 0 )  and Fig. 3 ( a =  11) clearly show for the present 
model that one cannot see the pure t -2 tail in the time interval between 10 
and 60 mean hopping ("collision") times. (1-3! Unfortunately, this time 
interval covers the typical range where one has searched for the long-time 
tail of the VACF in computer simulations on the Lorentz gas. (14'15;18) This 
suggests that a detailed comparison of computer simulations and kinetic 
theory calculations for Lorentz-type models is only feasible for the time 
intervals presently accessible in computer simulations if at least the next 
asymptotic correction is known theoretically. This has been shown convin- 
cingly in recent computer simulations by Frenkel (~9) on the hopping model 
on a square lattice with randomly excluded sites. (~) 

Next, it is instructive to consider the long-time behavior of the 
diffusion coefficient/3(t) in (5.1), for which the same information can be 
obtained as for VACF. In Figs. 4-6 the reduced diffusion coefficient d(t) 
defined in (2.22) is plotted as a function of 1/t (solid lines) for the square 
lattice and compared with the dominant tail and with the first correction 
(3.8) included (dashed curves, left side of graphs). The latter curve is very 
close to the actual VACF; the first one is not, except for a = 2  (Fig. 5), 
where all differences at long times are rather small. 

In connection with the poor agreement between computer simulations 
and kinetic theory calculations in the Lorentz gas we compare it with our 
results for the percolation model (RBM with a = 1 -  b = 0). Suppose the 
solid curve in Fig. 4 would represent a smooth fit to the simulation results. 
If one were to fit this curve in the interval, say, between 10 and 60 mean 
hopping ("collision") times with a linear curve/3(t)  = D(c) + p(c)(t - 1 ), one 
would find an apparent slope/~sim which would be 20-30 % larger than the 
actual slope/3(c) of the dominant tail (see upper dashed line in Fig. 4). This 
observation may partially explain why the "apparent" /~ values reported 
from computer simulations on the Lorentz gas (14'15) are too large. 

Next, we comment about the termite limit (a ~ ~ ) .  If one performs 
the c-expansion first [as is done in (1.9)], and subsequently takes the limit 
of the coefficient as ~ ~ ~ or b -~ -o0 ,  the scattering function in (1.10a) 
approaches a finite limit T(z)= -['2dJ(z)] -1 and all coefficients in (1.9) 
remain finite. However, the proper procedure for the termite model would 
be to take first a ~ ~ and subsequently perform a c expansion. The 
expression for the transition rate (1.2) suggests that both limits cannot be 
interchanged, so that the expansions derived here can only be applied to 

= 1 - b >> 1 as long as Ibl c - o-c ~ 1. 
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We finally compare our exact results for the VACF with the results of 
the effective medium approximation (EMA). This approximation takes into 
account all terms containing less than four T(z) operators [27], i.e., to 
O(c 2) all terms in (1.9) except the two lattice sums. Extension of the results 
in Refs. 9 and 10 yields the long-time behavior of the VACF in the form 
(3.7a), i.e., 

(~(t) ~- - f i t - 2 [1  + (%/0 In(t/v1) + "" "] (5.4) 

For the percolation case ( 0 =  l - b = 0 )  the EMA values of these coef- 
ficients are 

/~(c) = (e/2z0(1 - 2c) - - 1  

Zo(C ) = (4/70(1 --2c) 1 (5.5) 

z~(c) = (1/8)(1 - 2c ) -  1 exp [3/2 - 7 + c - (7~/4)(1 - 2c)] 

The EMA value for the diffusion coefficient is D ( c ) = ( 1 - 2 c ) / 4  and 
vanishes at the percolation threshold c =  l/2. The EMA values (5.5) are 
exact to O(c) [compare with (3.7b)]. However, the EMA value for fll 
defined in (3.10) equals f l l (EMA)=  2 [see (5.5)] and differs from the exact 
value fll - 3.77 (see Table II). As c 1" 1/2 (threshold), both coefficients fl(c) 
and ro(C ) are divergent, and the long-time behavior is dominated by the 
stronger tail ~1~ 

~b(t) -~ - ( 4 x  , , /2)-1(ln 01/2 t -3/2 (5.6) 

The last remark may explain the observation, ~4) made in computer 
simulations on the overlapping Lorentz gas, where the tail of the VACF is 
fitted to ~bsim(t)-~-At ~. There it is observed that the "apparent" 
exponent ~ decreases from its low-density value c~ '-~ 2 to a-~ 1 as the 
density of scatterers approaches the continuum percolation threshold. 

A P P E N D I X  A 

In this Appendix we derive the relations connecting response function, 
moments of displacements, diffusion and Burnett coefficients, and VACF 
for a system with cubic symmetry. 

The response function F(q, z) defined in (1.4) generates the Laplace- 
transformed moments of displacements, 

F ( q , z ) = l / z - � 8 9  ... (A1) 
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where dl.n=Y~dl~n ~ with n :{n~}  and q = { G }  being d-dimensional 
vectors (c~ = x, y,..., d), and O is a unit vector parallel to q. Thus 

(A2) 

For a system with cubic symmetry, (n~n~)=6~(n~) is a symmetric, 
second-rank tensor with one independent nonvanishing element. Similarly, 
<Gn~n~na) is a fourth-rank tensor with only two independent elements, 
say <n4x) and 2 2 <n~ny), so that 

<(O'n/> = <~5202  
(13) 

Let F(q,t) be the Fourier transform of the average probability 
(p(nt;mO)). Burnett coefficients can be introduced by extending Fick's 
law with O(V 4) terms, which reads, after Fourier transformation, 

(8/8t) F(q, t) = [ -q2D(O ) + q4B(0 ) + ---] F(q, t) (14) 

The diffusion coefficient D(dt) and Burnett coefficient B(0) are second- and 
fourth-rank tensors with cubic symmetry. They can be related to 
(8/80 In F(q, t), where In F(q, t) generates the cumulants of displacements: 

D(0 , t ) = ~  ?5 <(q'n) 2)=/~( t )  

/~(0, t)= ?5 {<(0.n)4>--B<(0.rt)2) 2} 

= ~ , x ( O  Z q 4 + K v(t) Z Y~ O2~O~ 

(15) 

with 

/~xx(t) = 75 (<n 4) -- 3 ( n ] )  2) 

1(6~) <n,~n~) <n~5 2) ~ . ( t ) = g  ?5 ( 2 2 _ 

(A6) 

The diffusion and Burnett coefficients can be identified (if they exist) with 
D = l i m t ~ / 5 ( t )  and B ~ = l i m , ~  B~(t). In the ordinary Lorentz gas, 
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which has isotropic instead of cubic symmetry, there is only one indepen- 
dent Burnett coefficient, Bxx(t)= Bxy(t). 

In generalized hydrodynamics one defines frequency-dependent 
transport coefficients through the response functions (~<16) as 

F ( q ,  z) = [ z  + q 2 ~ ( 0  , z )  - q 4 j ( 0  , z )  + . . . ]  -1  (A7) 

By making a q-expansion and comparing coefficients with (A1), one finds 
the frequency-dependent diffusion coefficient 

~(4, z) = qS(z) = az2 ( (g 1 .n)2)(z) = lz2 (n2 )(z) (A8) 

where the static diffusion coefficient is D = qS(z = 0). Similarly, one has 

d(0, z) = l z 2 [  ((0- n )4 ) ( z ) -  6z((0. rt)2 )2(z)] 

= zlxx(z) Z 9 4 + Ax.,'(z) ~, ~, 020~ (a9) 

with 

z l . , x ( z  ) - -  ~zZ[  <n4 >(z) -- 6z<n~. ) 2(z) ] 

Z~xv(Z ) = 1 2 2 2 _ gz [<nxn. , ,5 (z ) -2z<n#>2(z) ]  
(A10) 

Here J~/3=limz~o A~/~(z) are the modified Burnett coefficients u<16) if the 
limits exist. We further observe that the inverse Laplace transform of (A8) 
can be identified as the lattice equivalent of the velocity autocorrelation 
function (VACF): 

r  = ~ , , ( , p ( z ) )  = ,  ~ ~(a/at) ( n x )  = (v~(t) v~(o)> ( M 1 )  

Similarly ~ T l ( J ( z ) )  and B(t) can be expressed in four-point velocity 
correlation functions, (16) but these explicit expressions are not of interest 
here. 

By comparing (A5), (A6), and (A9) one obtains the following 
relations: 

f : d z  3~e(r) = B~,,(t) + f :  dr b( r )E/3( t )  - b(t-  r)J 

d~ z~.~('c) = ~xW) + d~b(~)[b(t)-b(t-r)] 
(A12) 

where z~( t )  = ~r l(A~(z)). If the long-time limit of the lhs of (AI 1 ) exists, 
then it approaches limz ~ o A~(z)= A~.  
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A P P E N D I X  B 

In the evaluation of the long-time tail in Section 3.2 one needs to 
calculate the lattice sum 

Rx~(n, z ) =  4T~(z) ga(1 - c o s  q~)2_ g(1 - cos q~) (B1) 
n r  

with g = 1/[z + c~(q)]. Here we have used (1.8) and (1.9) and the relation 

e -i'~q+q') = (2re)  a 6(q  + q ' )  - 1 ( B 2 )  
n ~ 0  

The second integral in (B1) yields 

f g(1 - cos qx) = dJ(z) = 1 - zL(z) 

due to (1.8), (1.9), and (2.2). The first integral can be further reduced to 

f g2 ( 1 - c ~  2 f g2c~ I g2 sin2 qx 

= -2dJ'(z)  + d2j(z) - dL(z) 

In the second equality we have performed a partial integration using the 
relation 

(d/dqx)[z + co(q)] -1 = - d - 1  sin q:j[z + co(q)] 2 

Combination of the previous equations yields finally 

R ~ x ( n , z ) = 4 d T 2 ( z ) [ d J ( z ) - d J 2 ( z ) - 2 J ' ( z ) - L ( z ) ]  (B3) 
nv~0 

In fact we need the value of (B3) only for z ~ 0, yielding 

E 2 
R x x ( n , O ) = b 2 ( d _ b l _ 2 ~ [ d - l - ( d - 2 ) L ( O ) ] ,  d>~3 (g4) 

, ~o [(1 - 2re), d =  2 

For d =  2 we have used the relation L(z)~- -re -1 In z as z ~ 0. 
In principle one could calculate higher order lattice sums, such as 

R3(n, z), using the analog of (B2): 

exp[in(ql + q2 + q 3 ) ]  ----- (27r) a fi(ql + q2 q- q3)  - -  1 
n~-O 
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This  r e l a t ion  couples ,  howeve r ,  the i n t e g r a t i o n  va r i ab le s  q l ,  q2, q3 in the  

different  q - i n t e g r a t i o n s  a n d  does  n o t  l ead  to  any  s impl i f ica t ions .  
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